スポンサーリンク

中学2年数学 平面図形 2まとめテスト3・解答

平面図形

中学2年数学 平面図形 2まとめテスト3・解答

3、長方形ABCDの辺DA上に点Pをとり、BPの延長とCDとの交点をQとします。このとき、△PQAと△CDPの面積が等しいことを証明してください。

  
  この問題は、△PQA△CDPの面積が等しいことを証明しますが、

  この形のままでは、証明しづらいので少し形を変えて考えていきます。

  まず考えなければいけないのは、三角形の面積ですから、底辺×高さ÷2の形にしなければならないので、

  △AQBを基にして考えていきます。

  この場合は、底辺をABとしたときに、高さはBCになります。

  つぎに、△PDCについて考えます。


  対角線、点Dと点Bを直線でつなぐと、PDが共通になります。

  ADとBCは長方形ですから平行になります。

  平行線の性質で、

  AD//BCならば、△PDB△PDCになります。

  これで、△ABD△ABQについて考えることができます。

  △ABDの面積は底辺AB、高さBCになり、

  △ABQAB×BC÷2

  △ABDAB×BC÷2

  △ABP共通ですから

  残りの、△AQP△BPDは同じ面積になります。

よって、

   △PQA△CDP

 になります。

 

コメント